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Abstract
The controlled-NOT (CNOT) gate is widely used in quantum circuits and
in current and proposed quantum computing technologies. We investigate
the feasibility and minimal implementation of CNOT from specific model
Hamiltonian operators that have appeared in the literature. We follow an
algebraic approach that provides an analytic solution. Our results are relevant
to effective two-qubit Hamiltonians currently being considered for spin-based,
superconductivity-based and other implementations of quantum computing.

PACS numbers: 03.67.Lx, 03.65.−Fd, 03.67.Mn

Introduction

There has been much interest of late in characterizing two-qubit operations, optimizing the
number of quantum logic gates in small circuits and developing minimal universal bases of
quantum gates [1–9]. In order to have a universal basis of quantum gates [10], it is necessary
to have a two-qubit operator that at least partially entangles two-qubit states. Two common
entanglers are the controlled-NOT (CNOT) and SWAPα gates, with 0 < α < 1.

In this paper, we supplement existing work on the feasibility and minimal implementation
of two-qubit operations in terms of the widely used CNOT gate. One motivation for this
is determining the practicality of CNOT and two-qubit gates derived from it for optically
based type II (or hybrid) quantum computing. More immediate, some recent investigation
developed a combination of analytic and numerical tests for CNOT feasibility [1, 11], and
some questions corresponding to certain Hamiltonian operators were left open. We address
these topics, providing a fully analytic solution, and additionally present some extensions.

We are concerned with whether certain parameterized Hamiltonians can generate a CNOT
up to local (single-qubit) gates in a certain time. An initial question is whether this is possible
at all. If so, we then seek an analytic result for the time to evolve to the CNOT gate, tCNOT.

As mentioned, a reason for investigating the feasibility and minimal implementation of
specified two-qubit operations is provided by type II quantum computing [12–14]. Within
this approach, a small number of qubits per node of a regular lattice is used. In addition to
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(re)initialization, the steps for running a quantum lattice gas algorithm on such an architecture
are collision, qubit state read out and streaming. In the streaming step, the qubit states are
communicated to the nearest neighbours of the lattice, while the collision operation is quantum
in nature. The unitary collision operator will presumably be more efficiently implemented
in terms of one entangler than another. To date, quantum lattice gas algorithms have been
simulated with only two or three qubits per node, although this is by no means necessary.
The collision operator for the most part has been based upon the SWAP1/2 gate. Besides
current NMR implementation [15], superconducting qubits [16–20] and optical qubits appear
promising.

Various authors have numerically sought gate implementations, even for two or three
qubits. A certain characteristic polynomial derived from the evolution operator at uniformly
spaced points in time has been evaluated in [1, 11]. We show that this can be avoided in finding
tCNOT. In contrast, references such as [19, 20] numerically seek an overall quantum gate that
implements a given unitary transformation, instead of using a sequence of elementary gates.
This is done by working in the control-parameter space of time-dependent coefficients of the
Hamiltonian. In addition, optimal implementation of two-qubit controlled-unitary operations
has been studied in [21]. It provides a compendium of numerical tests that detect when zero,
one or two CNOT gates are required.

In the next section, we first recall some background, note some properties of unitary
operators that we use and give some examples. We then address some specific Hamiltonians
H and the feasibility of obtaining the CNOT gate. After this we discuss alternative operator
methods for obtaining the matrix exponentials of interest for the quantum evolution operator.
While we concentrate on Hamiltonians of special eigenstructure, we briefly mention some
general techniques. We then provide a number of extensions, including to Hamiltonians with
time-dependent coefficients, and finish with a brief summary.

It may be worth pointing out that Hamiltonians commonly occurring in quantum
computing have special structure, implying additional properties beyond mere Hermiticity. In
addition, the Hamiltonians of interest for quantum computing are those that may be efficiently
simulated, i.e., simulated with a number of logic gates that is polynomial instead of exponential
in the number of qubits.

Notation and method

We adopt the notation and conventions of [1, 3]. As usual, U(N) denotes the group of N × N

unitary matrices and SU(N) the group of such matrices with determinant 1 with N2 − 1
parameters. For u ∈ U(4) we put γ (u) = uσ⊗2

y uT σ⊗2
y . Here σj are the standard Pauli

matrices and T denotes transposition. For a gate g ∈ U(n) we put χ(g) = det(xIn − g) for
the characteristic polynomial, where In is the n × n identity matrix. For n = 4, we require
g ∈ SU(4), so that the global phase of two-qubit unitaries is fixed to within factors of ±1 or
±i. We note the properties γ (cu) = c2γ (u), γ (I4) = I4 and γ (e±iπ/4 CNOT) = ∓iσz ⊗ σx

for c a constant and CNOT = 1
2 (I2 + σz) ⊗ I2 + 1

2 (I2 − σz) ⊗ σx . Here det(CNOT) = −1 and
we normalize the corresponding gate to be in SU(4) with the factor e±iπ/4.

In particular, for u and v in SU(4), they are equivalent up to local gates if and only if
χ [γ (u)] = χ [±γ (v)] [1]. An operator u ∈ SU(4) can be simulated with precisely one CNOT
gate if and only if χ [γ (u)] = (x2 + 1)2 [1] (proposition 3).

We note the following scaling property of the characteristic polynomial that is especially
pertinent in the case that an operator in SU(4) is implementable in terms of two CNOTs
and local gates [1] (proposition 4). If the characteristic polynomial has coefficients
gj , χ(g) = P(x) = x4 + g3x

3 + g2x
2 + g1x + g0, then for a constant c with |c| = 1, χ(cg) =
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x4 +cg3x
3 +c2g2x

2 +c3g1x +c4g0. In particular, if P(x) = x4 +g2x
2 +g0 for g, then cg has the

characteristic polynomial x4 +g2c
2x2 +c4g0. So if g2 and g0 are real coefficients, g2c

2 and c4g0

remain real if c = ±1 or ±i. Of course, if g ∈ SU(4), then necessarily g0 = 1 = det(g) ≡ |g|
and g2 is real.

For consistency with [1, 11] we take in what follows U(t) = exp(iHt) for the evolution
operator, where h̄ = 1 for convenience, whereas it is probably more conventional to take
U(t) = exp(−iHt) as the solution of the time-dependent Schrödinger equation ih̄U̇ = HU(t)

with initial condition U(0) = I , the identity operator. These conventions should be kept in
mind in regards to physical implementations.

As a first example, consider the two-qubit gate

SWAPα = 1

2




2 0 0 0
0 1 + eiαπ 1 − eiαπ 0
0 1 − eiαπ 1 + eiαπ 0
0 0 0 2


 . (1)

It is known that, when measured in terms of the number of gates, SWAPα and CNOT gates
are equally efficient in realizing any two-qubit quantum operation. Furthermore, arbitrary
two-qubit unitary operations require only three SWAPα gates with certain values of α and six
single-qubit gates [2].

We have |SWAPα| = eiαπ and find that

γ

(
SWAPα

|SWAPα|1/4

)
= e−iαπ/2




1 0 0 0
0 eiαπ cos απ −i eiαπ sin απ 0
0 −i eiαπ sin απ eiαπ cos απ 0
0 0 0 1


 , (2)

and

χ

[
γ

(
SWAPα

|SWAPα|1/4

)]
= x4 − e−iαπ/2(e2iαπ + 3)x3 + 3 e−iαπ (e2iαπ + 1)x2

− e−3iαπ/2(1 + 3 e2iαπ )x + 1. (3)

Then Tr
[
γ
(

SWAPα

|SWAPα |1/4

)] = 2(e−iαπ/2 + eiαπ/2 cos απ) has vanishing imaginary part only when
α is an even integer. Since α = 0 is the trivial case of the identity matrix from SWAPα , it
generally requires three CNOT gates and single-qubit gates to simulate SWAPα [1]. For α = 1
we recover the well-known result that SWAP is equivalent to three CNOT gates. Despite the
known result that one CNOT can be realized by two SWAP1/2 gates and single-qubit gates [2],
a reciprocal result for SWAP1/2 from two CNOT and single-qubit gates does not seem to hold.

Timing a Hamiltonian to produce CNOT

Consider the two-qubit Hamiltonian

Hw ≡ wI2 ⊗ σz + σx ⊗ σx, (4)

where −1 � w � 1. In this section, we show, among other results, that Hw generates a CNOT
gate and that the time for which this occurs is

tCNOT = 1

2

cos−1(−w2)√
1 + w2

. (5)

This formula subsumes a numerical result restricted to the special value of w = 0.42 [1, 11].
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We first note the special structure of

Hbw ≡ wI2 ⊗ σz + bσx ⊗ σx = H
(1)
bw + H

(2)
bw ≡




w 0 0 b

0 0 0 0
0 0 0 0
b 0 0 −w


 +




0 0 0 0
0 −w b 0
0 b w 0
0 0 0 0


 ,

(6)

where b is a real number. While in general exp(A + B) �= exp(A) exp(B) for operators A and
B, here we have exp(iHbwt) = exp

(
iH(1)

bw t
)

exp
(
iH(2)

bw t
)
. Not only do H

(1)
bw and H

(2)
bw commute,

the separate products H
(1)
bw H

(2)
bw = H

(2)
bw H

(1)
bw = 0. This reflects the fact that H

(1)
bw and H

(2)
bw

act on distinct subspaces of C2 ⊗ C2. The eigenvalues of Hbw are simply ±
√

w2 + b2, each
of multiplicity two, and exp(iHbwt) has the same main-diagonal-plus-cross-diagonal form as
Hbw itself.

Therefore, it suffices to determine the evolution operator Ubw(t) = exp(iHbwt) simply
from the known result for the matrix exponential of a 2 × 2 matrix. We have, putting
f ≡

√
(a − d)2 + 4bc,

exp

([
a b

c d

])
= 1

f

×
[

e(a+d)/2[f cosh(f/2) + (a − d) sinh(f/2)] 2b e(a+b)/2 sinh(f/2)

2c e(a+b)/2 sinh(f/2) e(a+d)/2[f cosh(f/2) + (d − a) sinh(f/2)]

]
.

(7)

We may note the simplification that occurs in this equation for a = −d, and that this is

precisely the case for H
(j)

bw in equation (6). In this instance, the matrix
[
a b

c −a

]
has eigenvalues

of opposite sign, ±f/2.
Putting x ≡

√
w2 + b2 and noting cosh(it) = cos t, sinh(it) = isin t , we obtain the

symmetric unitary matrix

xUbw(t) = x cos(xt)I4 + isin(xt)[wI2 ⊗ σz + bσx ⊗ σx]. (8)

Without loss of generality, we may take b = 1, that amounts only to a scaling of the
Hamiltonian Hbw with w → w/b. As Ubw(t) is a symmetric unitary, its determinant may
only take the values ±1. Indeed, as Hbw is traceless, |Ubw(t)| = 1. We find that, with
Uw(t) ≡ exp(iHwt),

x2γ (Uw) = [w2 + cos(2xt)]I4 + iw[−1 + cos(2xt)]σx ⊗ σy + ix sin(2xt)σx ⊗ σx. (9)

We then ask when χ [γ (Uw(t))] = (x2 + 1)2. This gives the condition

4

x2
[w2 + cos(2xt)] = 0, (10)

whence equation (5) follows. At the time t = tCNOT we have, with w′ ≡ √
1 − w2,

Uw(t) = 1√
2
(w′I4 + iwI2 ⊗ σz + iσx ⊗ σx)

= 1√
2




iw + w′ 0 0 i
0 −iw + w′ i 0
0 i iw + w′ 0
i 0 0 −iw + w′


 . (11)
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We note that a condition similar to equation (10) arose [22] (p 11) in connection with
generating a CNOT gate from the Hamiltonian

Hyy = g1xσ
1
x + g1zσ

1
z + g2xσ

2
x + g2zσ

2
z + Jσ 1

y σ 2
y . (12)

In fact, given f1 + f2 = 2
√

g2
1x + g2

1z and f1 − f2 = 2
√

g2
2x + g2

2z, and taking J = 1, the
required time satisfies

t = cos−1
(−f 2

j

)
+ 2πnj

2
√

f 2
j + 1

, j = 1, 2, (13)

where nj are integers and the principal branch is taken for the arccosine function. The
minimal time solution numerically determined together with f1 and f2 in [22] corresponds to
n1 = n2 = 1.

A semianalytic solution of equation (13) is possible, requiring only root finding to
determine f1. The right-hand side of that equation for n1 = 1 will have a minimum near
f1 ≈ 0.95, with the precise value determined by the condition of zero derivative with f1 �= 0:

cos−1 (−f 2
1

)
+ 2π = 2

√
1 + f 2

1

1 − f 2
1

, 0 < f1 < 1. (14)

Substitution of this expression into equation (13) at n1 = n2 = 1 gives the remarkably compact
result

tCNOT = 1√
1 − f 2

1

. (15)

Therefore we obtain the values f1 = f2 
 0.951 640 216 44 and tCNOT 
 3.255 052 116 05.
Now consider the isotropic Heisenberg (exchange) Hamiltonian

HXYZ = σx ⊗ σx + σy ⊗ σy + σz ⊗ σz. (16)

We have |eiHXYZt | = 1 and find that

γ (eiHXYZt ) =




e2it 0 0 0
0 cos 4t (cos 2t − isin 2t) i e−2it sin 4t 0
0 i e−2it sin 4t cos 4t (cos 2t − isin 2t) 0
0 0 0 e2it


 , (17)

and

χ [γ (eiHXYZt )] = (x − e2it )3(x − e−6it ). (18)

Then it is possible to find times t such that this characteristic polynomial assumes the form of
(x ± 1)4. However, due to the asymmetry in the two x-dependent factors on the right-hand
side of equation (18), it is not possible for χ [γ (eiHXYZt )] to take the form of (x2 + 1)2. So it
is possible according to the value of t for exp(iHXYZt) to be either in the equivalence class
with no CNOT or two CNOT gates, but not a single CNOT. This proves that HXYZ cannot be
timed to generate CNOT. This nonfeasibility question was left open in [1]. However, it was
just previously resolved in [7] (section VA), where it was shown that HXYZ may implement
SWAP1/2 and its inverse and no other perfect entanglers. We have given an alternative
demonstration.
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Alternative techniques for the matrix exponential

Based upon tensor product properties, there are many different ways in which to find the
quantum evolution operator from the Hamiltonians of interest in this paper. We illustrate
several of these in this section. These techniques likely have other applications, as many
generalizations are possible.

As a first simple example, consider the Hamiltonian Hbw of equation (6). We find that
H 2

bw = (w2 +b2)I4. By forming the Maclaurin series for Ubw(t) = exp(iHbwt) we then obtain

Ubw(t) = cos(xt)I4 +
i

x
sin(xt)Hbw. (19)

We thus recover equation (8).
We next present various methods for deriving the evolution operator and other properties

following from the Hamiltonian HXYZ of equation (16). Again based upon the properties of
tensor products of Pauli matrices, we find the relation

H 2
XYZ = 3I4 − 2HXYZ. (20)

This property suffices to find all nonnegative integers powers of HXYZ and indeed then all
analytic functions of it. If we put H

j

XYZ = ajHXYZ + bj I4, with aj and bj integer coefficients
to be determined, we have by equation (20) that

H
j+1
XYZ = 3aj I4 + (bj − 2aj )HXYZ. (21)

Therefore, we find the recursion relations

bj+1 = 3aj , aj+1 = bj − 2aj , (22)

with the initial values a1 = 1 and b1 = 0. The solution of equation (22),

aj = 1
4 [1 − (−3)j ], bj = 1

4 [3 + (−3)j ], (23)

exhibits the relation aj + bj = 1, j � 1, that may otherwise be readily verified. Indeed, from
equation (22) we have bj+1 + aj+1 = bj + aj = a1 + b1 = 1 and then the single equation for
say bj is bj+1 = 3 − 3bj . We have found

H
j

XYZ = 1
4 {[1 − (−3)j ]HXYZ + [3 + (−3)j ]I4}, (24)

and this in turn yields

UXYZ(t) ≡ eiHXYZt = 1
4 [2i e−it sin 2tHXYZ + (e−3it + 3 eit )I4]. (25)

We may note in passing that each tensor product term in HXYZ commutes with the others.
Therefore, we have

UXYZ(t) = exp(iσx ⊗ σxt) exp(iσy ⊗ σyt) exp(iσz ⊗ σzt)

= (cos tI2 + isin tσx ⊗ σx)(cos tI2 + isin tσy ⊗ σy)(cos tI2 + isin tσz ⊗ σz). (26)

Again using properties such as (σx ⊗ σx)(σy ⊗ σy)(σz ⊗ σz) = −I4 we obtain the alternative
expression

UXYZ(t) = (cos3 t + isin3t)I4 + i eit cos t sin tHXYZ. (27)

Finally, as a third method for dealing with HXYZ , we may apply the operator Schmidt
decomposition of the SWAP gate,

SWAP = 1
2 (I2 ⊗ I2 + σx ⊗ σx + σy ⊗ σy + σz ⊗ σz). (28)

This gives Hs ≡ HXYZ/2 = SWAP − I4/2 and is again very convenient for exponentiating
HXYZ as of course SWAP commutes with the identity operator. We have exp(iHst) =
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exp(iSWAPt) exp(−iI4t/2), where the latter factor is the diagonal matrix exp(−iI4t/2) =
diag(e−it/2, e−it/2, e−it/2, e−it/2). Since SWAP2 = I4, we have

eiSWAPt = cos tI4 + isin t SWAP. (29)

Then with the scaling t → 2t we obtain UXYZ(t) in agreement with the above expressions.
The symmetric Hamiltonian HXYZ = HT

XYZ gives rise to the symmetric unitary evolution
operator UXYZ(t). Then one finds that γ (UXYZ) = U 2

XYZ = e2iHXYZt . That is, the evolution
operator UXYZ(t) and the operator γ [UXYZ(t)] are intimately and very simply related by way
of t → 2t . This is an instance of the following more general result.

Any symmetric matrix of the form

S =




a 0 0 b

0 c s 0
0 s c 0
b 0 0 a


 (30)

is invariant under the transformation S → σ⊗2
y ST σ⊗2

y . Then simply we have γ (S) = S2. Such
matrices as S will be diagonal in the Bell or magic bases. The evolution operator UXYZ(t) is
an example of equation (30) for the special case of b = 0.

Additionally of interest for the determination of CNOT gate feasibility, we have from
equation (30) for the corresponding characteristic polynomial χ [γ (S)] = χ(S2). This
polynomial may easily be explicitly written and we omit the details.

The transformation property of S of equation (30) extends to symmetric matrices of the
form

S =




a d e b

d c s −e

e s c −d

b −e −d a


 . (31)

Then again we have γ (S) = S2.
For the important matrix exponentiation problem, still other methods have been given.

These include both general [23–25] and specific [26] methods. Putzer [23] gave two
methods based upon the fact that exp(At) is a polynomial in the square matrix A whose
coefficients are scalar functions of t. Gantmacher’s purely algebraic method [24] is based
upon the Lagrange–Sylvester interpolation formula and requires knowing the factorization of
the minimal polynomial of A. Another general method was developed by Kirchner [25] using
the factorization of the characteristic polynomial of A.

On the other hand, Apostol [26] gave results suited to specific eigenvalue assumptions.
In particular, his theorem 2 treats the case of an n × n matrix A with n distinct eigenvalues λk .
The result is that

eAt =
n∑

k=1

eλktLk(A), (32)

where the Lk(A) Lagrange interpolation coefficients are given by

Lk(A) =
n∏

j=1
j �=k

A − λj I

λk − λj

, 1 � k � n. (33)

We may note that separate information on the eigenvectors of A is not required. We describe
how this theorem may be extended and briefly illustrate this with respect to an earlier example
in the case of n = 4.
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For matrices of repeated eigenvalues, we may perform the coalescence of eigenvalues in
the expressions (32) and (33). We restrict attention here to eigenvalues of multiplicity two and
use the limit

lim
λj →λk

1

λj − λk

[eλj t (A − λkI ) − eλkt (A − λj I )] = [I + (A − λkI )t] eλkt , (34)

that may be obtained with the aid of L’Hôpital’s rule or simply by way of the definition of the
derivative with respect to λj .

In the case of n = 4, omitting details, we find in the case of both λ1 → λ2 and λ3 → λ4

that

eAt = 1

(λ4 − λ2)2
{(A − λ4I )2[(A − λ2I )t + I ] eλ2t + (A − λ2I )2[(A − λ4I )t + I ] eλ4t }. (35)

In particular, if we now take λ2 = −λ4 we are in the same situation as the Hamiltonian Hbw

with doubly repeated eigenvalues ±x, and equation (35) reduces to previous results.

Extensions to other Hamiltonians

An extension of the above procedures for the determination of CNOT feasibility is to matrices
of the form

Hbwv ≡




w1 0 0 b1

0 w2 b2 0
0 b∗

2 v2 0
b∗

1 0 0 v1


 , (36)

where w1, w2, v2 and v1 are real numbers. Again the complex exponentials of these matrices
will retain this same form.

The class of matrices of the form of equation (36) includes those of much current interest
for superconducting flux qubits [17, 18]. In one method [17] we have the effective Hamiltonian

Heff = Jac

4
[σz ⊗ σz ± σy ⊗ σy], (37)

where Jac ≈ 100 MHz is the ac coupling energy. Without loss of generality (due to possible
scaling) we put

H
(±)
eff = σz ⊗ σz ± σy ⊗ σy =




1 0 0 ∓1
0 −1 ±1 0
0 ±1 −1 0

∓1 0 0 1


 , (38)

and U(±)(t) ≡ exp
(
iH(±)

eff t
)
. We determine that

γ (U(±)) = 1

2




1 + e4it 0 0 ±(1 − e4it )

0 1 + e−4it ±(1 − e−4it ) 0
0 ±(1 − e−4it ) 1 + e−4it 0

±(1 − e4it ) 0 0 1 + e4it


 , (39)

and

χ [γ (U(±))] = (x − 1)2(1 − 2 cos(4t)x + x2). (40)

Therefore, the evolution operator U(±) can be simulated with two CNOT and single-qubit
gates.
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More generally than equation (37) we may consider Hamiltonians with time-dependent
coefficients such as [18]

Hflux(t) = −g+(t)

4
(σx ⊗ σx − σy ⊗ σy) − g−(t)

4
(σx ⊗ σx + σy ⊗ σy). (41)

This logical Hamiltonian appears in a design for tunably coupling a pair of flux qubits
via the quantum inductance of a third high-frequency qubit. In this setup, all of the time
dependence of the Hamiltonian is taken to arise from a time-dependent magnetic flux. Putting
Uflux(t) = exp

[
i
∫ t

0 Hflux(t
′) dt ′

]
and j±(t) = − ∫ t

0 g±(t ′) dt ′, we have

Uflux(t) =




cos(j+/2) 0 0 isin(j+/2)

0 cos(j−/2) isin(j−/2) 0
0 isin(j−/2) cos(j−/2) 0

isin(j+/2) 0 0 cos(j+/2)


 . (42)

We have |Uflux| = 1 and

γ (Uflux) =




cos(j+) 0 0 isin(j+)

0 cos(j−) isin(j−) 0
0 isin(j−) cos(j−) 0

isin(j+) 0 0 cos(j+)


 . (43)

Furthermore,

χ [γ (Uflux)] = (1 − 2 cos j−x + x2)(1 − 2 cos j+x + x2), (44)

so that Uflux may be simulated with two CNOT and single-qubit gates in general. When
cos j± = 0, we have χ [γ (Uflux)] = (x2 + 1)2 so Uflux is equivalent up to local gates to CNOT.
Therefore, Uflux may be used to generate a CNOT gate.

Given functions g±(t) ∝ δε3±(t) where δε3± is the amplitude of microwave modulation
of the energy level of the third qubit at the sum or difference frequency of the two detuned
qubits [18], the time to reach the CNOT gate is given by

j±(t) = −
∫ t

0
g±(t ′) dt ′ = ±(n + 1/2)π, n = 0, 1, 2, . . . . (45)

At say the time j±/2 = π/4, we have

Uflux = 1√
2




1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1


 . (46)

At such a time this operator maximally entangles the four standard basis states.
Another extension of the above procedure would be to higher dimensional Hamiltonians

of special form. These include

H
(2n)
bw = wI2n−1 ⊗ σz + bσ⊗n

x , (47)

and

H
(2n)
XYZ = σ⊗n

x + σ⊗n
y + σ⊗n

z , (48)

as well as extensions of equations (36), (38) and (41). The matrix representation of these
Hamiltonians still retains a diagonal-plus-cross-diagonal form. As such, their complex
exponentials may still be determined by the 2 × 2 matrix result in equation (7) or by the
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methods of the previous section. For instance, we have
[
H

(2n)
bw

]2 = (w2+b2)I2n and
[
H

(2n)
XYZ

]2 =
3I2n + [in + (−i)n]H(2n)

XYZ . In the case that n = 2m we have
[
H

(2n)
XYZ

]2 = 3I2n + 2(−1)mH
(2n)
XYZ .

The γ operator extends to γn(u) = uσ⊗n
y uT σ⊗n

y . However, for n > 2, γn and χ(γn) no longer
completely classify the action of a given gate [27]. This aspect is related to the fact that even
for n = 3 qubits there is no longer a direct analogue of the magic basis as there is for two
qubits.

Finally, we note that the Hamiltonians considered in this paper may be efficiently simulated
on a quantum computer according to the method of section 4.7.3 of [10] that uses an ancillary
qubit (starting and ending in the state |0〉) and controlled phase shifts based upon tensor
products of σz interactions. Interactions coming from tensor products of σx and σy can be
replaced in terms of σz by appropriate single-qubit gates. In particular, for σx interactions we
may use the similarity transformation σx = RσzR, where R is the Hadamard gate, and for

σy interactions the similarity transformation σy = QσzQ
†, where Q ≡ 1√

2

(−i i
1 1

)
. Then it is

possible to write the quantum circuit performing the unitary evolution coming from the given
Hamiltonian.

Summary

By pursuing an algebraic technique, we have shown how to analytically determine the
feasibility of generating a quantum controlled-NOT logic gate from a specified but parameter-
dependent two-qubit Hamiltonian. When it is possible for the corresponding evolution operator
U to be in the same equivalence class (up to single-qubit gates) as CNOT, we are able to find the
necessary evolution time. We thereby generalized some earlier results restricted to numerical
investigation [1, 11]. By retaining the parameter dependence in our analytic solution, we are
able to show the effect of the corresponding Hamiltonian contribution.

Our method has direct relevance to two-qubit Hamiltonians currently being considered
for spin-based and superconductivity-based systems for quantum computing. For spin-based
implementations, the exchange interaction is the leading mechanism for realizing two-qubit
gates, and strong candidates such as the quantum inductance of an ancillary qubit are emerging
for magnetic-flux-based implementations for constructing nonlocal quantum gates. As a
particular instance of our results, we showed that the operator Uflux of equation (38) is capable
of yielding a CNOT gate, with the then concomitant time being given by the condition
in equation (41). Our algebraic technique applies to other physical systems for quantum
computing, including ion-trap-based systems and optical implementations.
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